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A B S T R A C T

Terahertz imaging (frequency between 0.1 to 10 THz) is a modern technique for public security
check. Due to poor imaging quality, traditional machine vision methods often fail to detect
concealed weapons in Terahertz samples, while modern instance segmentation approaches have
complex multiple-stage concatenation and often hunger for massive and accurate training data.
In this work, we realize a novel Conditional Generative Adversarial Nets (CGANs), named as
Mask-CGANs to segment weapons in such a challenging imaging quality. The Mask-Generator
network employs a “selected-connection U-Net” to restrain false alarms and speed up training
convergence. The loss function takes reconstruction errors and sparse priors into consideration to
preserve precise segmentation. Such a learning architecture works well with a small training
dataset. Experiments show that the proposed model outperforms CGANs (more than 16–32% in
Recall, Precision and Accuracy) and Mask-RCNN (more than 3–6%). Moreover, its testing speed
(69.7 FPS) is fast enough to be implemented in a real-time security check system, which is 44
times faster than Mask-RCNN. In the experiments for mammographic mass segmentation on
INBreast dataset, the Dice index of the proposed method is 91.29, surpasses the-state-of-the-art
medical issue segmentation methods. The full implementation (based on TensorFlow) is available
at https://github.com/JXPanzz/THz).

1. Introduction

Detecting concealed objects underneath clothing is a critical task in public security check, while the traditional manual check is
often criticized with inefficiency, invasion of privacy, and high rates of missed detection. Terahertz imaging technology [1–3],
provides a non-contact and non-destructive way to acquire samples of objects concealed underneath clothing with no harmful to
health. However, due to the inherent physical properties of Terahertz imaging, samples have low contrast and signal to noise ratio.
Fig. 1 shows our Terahertz imaging samples, where the concealed weapons are inconspicuous in intensity value, yet the boundary of
objects are partially indistinguishable from the human body.

A typical use of modern deep convolutional networks is on classification tasks, where the output to an image is a single class label.
However, in many visual tasks, especially in a security check system, the desired output should include localization, i.e., a class label
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is supposed to be assigned to each pixel. Traditional object recognition often follows the detection-first regime. Unfortunately, the
imaging quality mentioned above leads to poor detection. Our idea is to first accurately segment concealed objects from subjects’
body without any prior supervised label. Following this way, actually, detection is just the post-processing following segmentation –
When the segmentor provides a none-zero blob, then provide a bounding-box to highlight the region. Obviously, this is a instance-
segmentation regime. Modern instance segmentation approaches based on deep convolutional neural networks [4–13] have great
potential in this task. But segmentation and detection often belong to two relatively independent units, which makes the modeling
structure rather complex resulting in a slow processing speed and less robustness. Moreover, modern deep convolutional networks
often hunger for massive training data. Since the imaging highly depends on specific equipment, thousands of training images for
each class are beyond reach in this task.

Generative adversarial nets (GANs) [14] were introduced for training generative models in order to sidestep the difficulty of
approximating many intractable probabilistic computations when just relying on a small dataset. It can produce state of the art log-
likelihood estimates and realistic samples. A conditional GANs (or CGANs) model [15] by giving the model additional information, is
possible to direct the data generation process. Such conditioning could be based on class labels, on some part of data for inpainting, or
even on data from different modalities. CGANs have been applied in many image generation tasks, such as image forgery and super
resolution.

In this work, we realize this particular instance segmentation task as an image-to-image transformation process that translates
input samples into masks containing interested objects while dropping unrelated ones. We propose Mask-CGANs shown in Fig. 2. To
meet the specific needs, the loss function of Mask-CGANs takes reconstruction errors and sparse prior knowledge into consideration.
In the Mask-Generator net, a “selected-connection U-Net” is designed to preserve objects and discard useless image details which
makes a trade-off between Recall and False Alarm rates. Experiments show that the proposed Mask-CGANs outperform CGANs and
the state of the art instance segmentation approach Mask-RCNN in both robustness and processing speed.

Fig. 1. Images in our dataset. These four samples show weapons concealed in different positions on four subjects from fore and back views (weapons
are marked by red bounding boxes). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 2. Mask-CGANs framework for segmenting weapons in Terahertz samples. Image x is added into Mask-Generator as a condition to achieve
CGANs. Segmentation masks are generated by Mask-Generator under the supervision of Discriminator and loss function during training phase.
Masks are output from the trained Mask-Generator during testing phase.
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The contributions of this work are:

• Introducing adversarial learning to deal with a small training dataset.

• Designing a “selected-connection U-Net” for the Mask-Generator to make a balance between Recall and False Alarm rates.

• Introducing reconstruction errors and sparse priors into consideration for the loss function of the proposed Mask-CGANs, to
provide precise segmentation.

• It is appropriate to be implemented in a real-time Terahertz security inspection system.

The outline of this paper is organized as follows: the related work will be introduced in Section 2, the proposed Mask-CGANs used
in this task will be introduced in detail in Section 3, Dataset preparation and augmentation, experiment set-up and results, and the
discussion about results will be presented in Section 4, conclusion and future work will be provided in Section 5.

2. Related work

As the samples got from Terahertz waves are under poor quality, finding the prohibited items from the present low quality
electromagnetic imaging data becomes particularly difficult. Early work focused on statistical modeling. Shen [16] proposed mul-
tilevel thresholds segmentation by using a Gaussian Mixture Model (GMM) to model the probability density function of radiometric
temperature and segment objects by tacking the evolution of boundaries during threshold changing, and the anisotropic diffusion
algorithm is applied as a pre-processing to remove noise. Lee [17] builds GMM for the samples and then human bodies and objects are
divided by Bayesian boundaries in two Expectation Maximization (EM) processing respectively. Yeom et al [18] applied a multilevel
segmentation process based on GMM and vector quantization used before EM for real-time detection. These statistical modelling
methods are applicable to segment object in the weak supervised way which lack the capability in accurate detection without any
label, and the segmentation performance is poor under bad imaging quality.

Modern general instance segmentation approaches based on deep convolutional networks have great potential in this task. This
kind of approaches could be roughly divided into two families. One family relies on the R-CNN proposals, which is a bottom-up
pipeline that the segmentation results are based on the proposals and then labelled by a classifier [4–9]. The other family relies on
semantic segmentation results [10–13] where instance segmentation following semantic segmentation by classifying pixels into
different instances. A state-of-the-art method Mask-RCNN [19], built upon object detectors [20,21], also depends on the proposals
but features are shared by classes, box predictors and mask generators, then all results are collected in parallel. However, all of those
algorithms contain complex multiple-stage cascading which is slow and less robust. In addition, the deep convolutional networks
based framework is typically requiring big training datasets to guarantee their generalization for new data while our dataset is rather
small (with 1440 samples in 2 classes for both training and testing).

GANs provides a generative model which can achieve image-to-image mapping. A GANs [14] aims to fit a mapping function f
from noise z input to its output sample g, f : z→ g, who does not need the prior knowledge about a latent data distribution and
captures it just through an adversarial process. A typical GANs model contains two parts. One is Generator (G) which tries to generate
fake samples but more and more realistic then tries to fool the other one called Discriminator (D) to make mistakes. And the
assignment for D is to distinguish whether the samples received are fake generated by G or real ones sampled from real data. Then the
ultimate outcome is that G can generate samples where D cannot determinate if they are fake or not. A mount of new training data
produced during this adversarial process can release pressure on small datasets. Outwardly, it is fully under an unsupervised manner,
so that original GANs can be seen just as a noise mixer to generate samples with a latent noise distribution. Additional information is
added into the unsupervised model to direct the generating process, for example, CGANS aims at generating images under certain
constraints [15,22–26], which could be seen as a supervised label for each training sample. We argue that object segmentation can be
regarded as a special sample generation task. The difference is that the generated sample is the mask of the object. Thus, the inner
structure of GANs should be designed to meet this particular aim.

3. Model structure of Mask-CGANs

As a supervised segmentation task, the location of the object should be preserved. As it is shown in Fig. 2, during the training
phase, Mask-CGANs learns the mapping function f from a Terahertz sample x to its ground truth y. The training is supervised by a
Terahertz sample x as condition along with its ground truth y and a noise z produced by the drop-out process in the Mask-Generator
model to output a fake sample G(x, z), correspondingly. While the inputs Discriminator receiving include two parts: one is the real
pair: a Terahertz sample with its ground truth, the other contains a real Terahertz sample and a fake sample produced by the Mask-
Generator. In the testing phase, given a condition sample, the mask sample is generated deterministic by the trained Mask-Generator.
For the Discriminator of GANs, we follow the Discriminator net model used in [15], a convolutional PatchGAN classifier, which only
penalizes structure at the scale of image patches.

3.1. Selected-connection U-Net for Mask-Generator

For the designing of the Mask-Generator, ablation studies and Occams Razor are guiders for our study. We provide the discussion
and explanation why we design a Selected-connection U-net structure.

For the Mask-Generator net, our model and another two candidates are illustrated in Fig. 3(a). As a generator, traditional
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“Encoder-Decoder” [27] is the basic feature mapping model. It represents the mapping function from a Terahertz sample x to its
segmentation mask G(x, z). Image x passes through several down-sampling layers until a bottleneck layer and then up-sampling
process applied symmetrically. In another word, all information flows through all layers where low-level features are lost. However,
there is a great deal of low-level information shared between the input and output, and it would be desirable to shuttle this in-
formation directly across the net. For example, in the case of tiny objects segmentation, the input and output share the location of
prominent edges, which are important to help find the objects.

“U-Net” [28] employed in [15] concatenates all the layers before the bottleneck layers with richer fine-grained features to hold
more realistic samples. In experiment, we found it provides image details, but, produces many false alarms, which can be seen in
Table 1. The original “U-net” essentially propagate information from the down-sampling layers to all corresponding symmetrical up-
sampling layers. For a segmentation task, the low-level feature layers contain too much redundant interference. However, we should
take care of the balance between recalling hidden objects as many as possible and making mistakes as few as possible. As shown in
Fig. 3(b), the feature maps sampled from the first three down-sampling layers who carry too much edge information and background
which we want to discard when segmenting the objects of interested. Such low-level features may lead to higher false alarms when
they emerge in the up-sampling layers nearby the output one.

The above mentioned is the motivation why we propose a “selected-connection U-Net”, to discard the feature channels between
low-level feature layers, and to preserve the ones between high-level feature layers. The experimental results indicate this im-
provement works much better than original U-net and Encoder-Decoder. Along with the loss function (will be introduced in Section
3.3), it makes a good tradeoff between Recall and False Alarm rates.

The Mask-Generator, selected-connection U-Net is shown in Fig. 4. This model is a fully convolutional net with 16 layers, and each

Fig. 3. (a) Mask-Generator “selected-connection U-Net”model and two other candidates. The white blocks mean the down-sampling layers’ features
and the up-sampling layers’ are in gray color. The connection lines (in green) copy features from the beginning layers to terminal layers. (b) We
sample some feature maps produced by the first three encoder layers. Rich low-level features like edges are shown in those feature map which will
cause a higher False Alarm rate when concatenated to the layers nearby the output layers. So our model drops this feature from “U-net”. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Overall evaluation comparisons.

Generator or method Loss function Recall Accuracy Precision False Alarm

Encoder-Decoder [27] +L LLCGANs 1 0.6375 0.5083 0.6296 0.7500
U-Net(CGANs) [15] LCGANs 0.7500 0.5000 0.6000 1.0000
U-Net +L LLCGANs 1 0.9125 0.7750 0.7849 0.5000
selected-connection U-Net +L LLCGANs 1 0.9125 0.8000 0.8111 0.4250
Mask-RCNN [19] – 0.8563 0.7583 0.7965 0.4375
selected-connection U-Net + +L L LL SCGANs 1 0.9125 0.8208 0.8343 0.3625
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layer has a 5*5 convolution kernel with stride equal to 2*2 and padding. So the image size will be reduced by halve after each process
of downsampling which consists 8 convolution layers and Leaky Relu function is taken as activation function. In contrast to the
downsampling, the image size is twice as large as the upsampling, but the number of features is halved. When up-sample, selected
output feature maps are merged with the corresponding feature maps from the down-sampling network to make well trade-off on
richer fine-grained features and lower false alarm rate.

3.2. The role of noise z

Input z is Gaussian noise, a standard operation in GANs, applied to the Mask-Generator during the training process. Without z, the
net could still learn a mapping from x to G(x), but would produce deterministic outputs, and therefore fail to match any distribution
other than a loss function. For our models, we provide noise only in the form of drop-out, applied on layers of the Mask-Generator.
The drop-out noise show minor stochasticity in the output of the Mask-Generator and thereby capture the entropy of the conditional
distributions it model. The introducing of Gaussian noise z allows the model to ignore the prior knowledge about the latent data
distribution and to captures it just through an adversarial process. New training data is produced during this adversarial process
which can release the pressure of overfitting on a small dataset. It makes the trained model more robust in our task.

3.3. Loss function

3.3.1. Basic CGANs loss
To segment concealed objects in a Terahertz sample comes, the basic loss function comes from CGANs [15]. Compared to tra-

ditional GANs, these approaches applied certain restrictions. In this work, the condition x (Terahertz sample) is added into each net.
The loss function is:

= + −∼ ∼ ∼L E x y E D x G x zlogD( , ) log(1 ( , ( , )))x y x y x x z p zCGANs , data( , ) data( ), ( ) (1)

In this loss function, both the Mask-Generator and Discriminator have a chance to observe the real input samples x during the
training phase. Discriminator maximizes this Expectation term (E) by outputting a high score for the pair (x, y) sampled from
distribution data(x, y) while giving the fake pair (x, G(x, z)), where x is sampled from real data distribution data(x) and z is produced
by p(z), a low score (the score measures the possibility of the sample the Discriminator received to be sampled from real data, and the
higher the more realistic). However, the Mask-Generator wants to optimise this function and generate fake samples as realistic as
possible to get a higher score for the fake pair. logD(x, y) and logD(x, G(x, z)) indicate the logarithm scores for real pair (x, y) and fake
pair (x, G(x, z)), respectively. In practice, z is a drop-out process in Mask-Generator layers to generate variant outputs. More new
samples are generated help to capture latent distributions and enhance the robustness. Condition x is employed to ensure the output
mask G(x, z) is in pair with condition x and locate at the corresponding position. Without condition x, the mask would be generated in
any arbitrary position.

3.3.2. Reconstruction error
Since the Mask-Generator is an encoder-decoder type generative model and aims to take in noise-perturbed input and reconstruct

original input, the loss function take reconstruction error into consideration. The reconstruction error measures the Manhattan
distance between the ground truth and the generated one in the pixel level. This part directs the generation process under the shape
constrains and enhance the supervision efficiency that restricts the mask output. Also, We use L1 instead of L2 as the latter brings

Fig. 4. The model structure of selected-connection U-Net. The model is a fully convolutional net with 16 layers, each layer has a 5*5 convolution
kernel with stride equal to 2*2 and padding.
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more blurs [15].This term is expressed as:

= ∥ − ∥L y G(x, z)L 11 (2)

3.3.3. Sparse constrain
Here, we also take sparse priors as a constrain term where L1-norm is applied instead of theoretical L0-norm or common L2-norm

that avoids solving a NP hard problem in the former norm whilst L2-norm cannot make most values to zero but small numbers. The
sparse prior constrain is measured as:

= ∥ ∥L G(x, z)S 1 (3)

The sparse prior helps to keep the generated mask within the bounds and reduce False Alarms thereby. The sparse assumption is
made for the targeted object just occupy a small area in the whole sample. Multiple targeted objects do not mean the area will cover
most area of the sample. So the sparse constraint also work with multiple targeted objects.

Then the final loss function is reorganized as three main parts:

= + +G D L λL βLGoal( , ) argminmax
G D

L SCGANs 1 (4)

Condition x and the reconstruction error provided as supervised terms ensures the generated result to be in pair with the input
Terahertz sample. Otherwise, the generated results will be much casual and diversified that is unsuitable for our needs. And precise
segmentation performance can be guaranteed by minimizing the distance between mask outputs and its ground truth. What's more,
sparse constrain, as prior knowledge, reduces False Alarm rates. The functions of these terms are shown and discussed in Section 4.

4. Experiments

In this section, we apply our Mask-CGANs and other models to segmenting hidden objects in Terahertz samples. Experimental
results will be demonstrated and discussed in detail.

4.1. Dataset preparation

The dataset contains 1440 Terahertz samples. Those samples are sampled from 4 subjects (360 for each one including fore and
back views) containing weapons like guns, knives or nothing. In experiments we do not distinguish the sample between fore or back
view and kinds of weapons, with 2 classes (with weapon or not). We define samples without any hidden weapon as negative while
others are positive. Ground truth labels are provided for each sample by manually segmenting the weapon areas by three guys, and
using the majority voting to produce the final ground truth. For the positive samples with weapons, segmentation masks are applied
as the ground truth, while for the negative samples which do not contain any weapons, their ground truths are the black background.

4.2. Training dataset augmentation

Data augmentation is essential to teach the network the desired invariance and robustness properties, when only few training
samples are available. We primarily undertake shift and rotation invariance as well as robustness to deformations and gray value
variations, to increase the variants of the trained data during the training phase. Especially random deformations and gray value
variations of the training samples seem to be the key concept to train a segmentation network with very few annotated images. We
generate smooth deformations using random displacement vectors on a coarse 3 by 3 grid. The displacements are sampled from a
Gaussian distribution with the 10 pixels standard deviation. Per-pixel displacements are then computed using bicubic interpolation.
Drop-out layers at the end of the contracting path perform further implicit data augmentation.

4.3. Experiment settings

In practice, 2/3 of the samples with their ground truths, selected randomly, are put into the Mask-CGANs model for training.
While the remaining 1/3 samples are used for testing. In this experimental evaluation, the validation set and training set are
overlapped. Although this way seems to be redundant for training, it is a safe way when the training set is relatively small.

The evaluation methodology is based on “overlapping threshold” [29]. It is strict and rigorous:

(1) A image sample is true positive (TP) if and only if its ground truth blob (connected region containing at least one pixel) is positive,
and the overlapping area between the ground truth blob and the generated mask blob is over a predetermined threshold ratio of
the total object domain. Otherwise it is regarded as false negative (FN) sample.

(2) The true negative (TN) sample is defined as the ground truth is negative and the output should not have any positive pixels (each
pixel value equals to 0). Otherwise it is regarded as false positive (FP) or false alarm sample. Namely, if there is one false positive
pixel in the image sample, the sample will be counted as a FP sample.

For quantitative analysis, four evaluation metrics, Precision, Recall, Accuracy and False Alarm were utilized,
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=
+

Precision TP
TP FP (5)

=
+

Recall TP
TP FN (6)

=
+

+P N
Accuracy TP TN

(7)

= =
N

FalseAlarm FalsePositiveRate FP
(8)

where P and N represents the number of all positive and negative image samples, respectively. Note that, the False Alarm will not be
affected while the threshold changes because if there is one false positive pixel, the image sample will be counted as a FP case.

A compared method in the experiment is Mask-RCNN [19], a state-of-the-art method for instance segmentation. It bases on
ResNet-101 [30], and it was pre-trained on COCO dataset. In the following experiment, it is fine-tuned using our Terahertz dataset.
Another compared method, CGANs [15] models were trained using our Terahertz dataset with different Generators and loss func-
tions, including the proposed Mask-CGANs, without any pre-trained network.

4.4. Experimental evaluation

Fig. 5 shows some samples segmented by our model. For visualization, we display the original Terahertz on the left, put ground

Fig. 5. Experiment results (12 groups). For each sample, it has three columns illustrated the original Terahertz sample (left), sample with ground
truth (middle, marked with green area), sample with ground truth and output of Mask-CGANs model (red area) from left to right. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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truth (green) onto the sample in the middle and segmentation result (red) with the sample and the ground truth on the right. Our
model can segment concealed weapons in noisy Terahertz samples where weapons are hidden at different locations by different
persons with different postures. When the sample contains hidden weapons, our model can output a mask to cover its area, and the
model outputs a black background for the samples without any concealed object.

The quantitative results in Table 1 have shown the efficiency of our Mask-CGANs model with appropriate loss function and model
structure in this task. Without the LL1 constrain (“U-Net”), which is a strong guidance to reach one-to-one match between the input
and the output, the generation process is able to achieve suitable results for the segmentation task and its Precision and Accuracy
rates are cut down much with a high False Alarm rate. For the model without concatenating low-level features (“Encoder-Decoder
(LCGANs, LL1)”) which play important role in finding tiny objects, its Recall rate is affected greatly (0.6375 vs. 0.9125 (“U-Net (LCGANs,
LL1)”). However, our model structure is different from “U-Net” and gets good tradeoff between Recall and False Alarm rates in
contrast to the other two candidates (False Alarm rate: 0.425 vs. 0.5 and 0.75). For sparse priors, the False Alarm rate decreased
sharply (0.3625 vs. 0.4250), and Precision and Accuracy increases correspondingly.

Fig. 6 displays some comparison results, about Recall, Precision, Accuracy and False Alarm rates of different models, as the
overlapping threshold changes. Because of our strict judgement method, the False Alarm rate will not be changed whatever the
threshold is. Our final model Mask-CGANs with selected-connection U-Net and Loss Function (LCGANs, LL1, LS) outperforms others both
in Precision and Accuracy rates at each threshold, even though Recall rates are affected slightly at some threshold points.

As for Mask-RCNN, our model surpasses this state-of-the-art instance segmentation method in such small and noisy specific
dataset both in the indexes shown in Table 1 and segmentation testing speed. As shown in Fig. 7, our model's testing speed is 69.7
FPS, while Mask-RCNN's is 1.6 FPS. Note that the significant advantage in the processing speed makes it possible to be implemented
in a real-time security inspection system.

Fig. 6. The Precision and Accuracy, Recall and False Alarm rates are changed with overlapping area threshold changing.
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Our model is trained for about 7.6 h in 400 epochs with 8 samples as a mini batch (all samples are resized to 256×256). All the
experiments are tested on a single GTX1080G1 GPU within a Windows 10 operating system and TensorFlow.

4.5. Test on INBreast dataset

In this part, we show experiments on another dataset INBreast dataset [31], which is a mammographic mass analysis dataset,
providing accurate contours of lesion region and the mammograms are of high quality. For mass segmentation, the dataset contains
116 mass regions. We use the first 58 masses for fine-tuning the model and the rest for test. For consistent medical comparison, the
Dice index metric is used for the segmentation results and is defined as

=
+ +

Dice 2TP
2TP FP FN (9)

As shown in Table 2, the Dice index of the proposed method is 91.29%, surpasses the-state-of-the-art medical issue segmentation
methods: Mask-RCNN [19] 91.07%, Multi-FCN-CRF with Adversarial Training [32] 90.97%, FCN with Adversarial Training 89.71%,
FCN [33] 89.48%, CGANs with U-net [15] 90.40%, and U-net [28] 89.79%.

4.6. Interface implementation

The graphic user interface is built to show the experimental results more intuitively. The GUI is based on PythonQt as shown in
Fig. 8. It displays the original Terahertz images (two images for one subject in fore and back view), the segmented mask of the
concealed objects, and the bounding box based on the mask (the red bounding box added on the original Terahertz image).

4.7. Discussion

4.7.1. Dataset size and overfitting
A concern is that the dataset size is rather small compared with some deep learning standard datasets. Actually, the class number

in our dataset is also small (1440 samples with 2 classes). Some deep learning datasets usually has samples more than 1000 in one
class, but the number of the training samples is not the essence, the representativeness of data is one of the most important concerns
for a machine learning task. Also, we applied data augmentation approaches, shift, rotation, deformations and gray value variations,
in the training phase for each comparison method, which increased the number of the training data.

To test the generalisation of the proposed method, even our dataset is small, we still decide to use 1/3 independent data for
testing. This rate is much larger compared with the traditional 10 folders or 5 folders testing.

GANs itself is a better choice when the training data is of a small number, that is also a consideration when we design this
framework.

In summary, our model is trained with random data augmentation under an adversarial learning framework, and tested using a
relative large independent testing dataset, to grantee the generalisation of this method.

4.7.2. False Alarm rate
Although the False Alarm rate of the proposed method is better than that of any other methods in our comparison, it is not so low

due to our strict evaluation methodology [29] that one single positive pixel will result a false alarm sample. Our model is a generative
method and some sparse local noise may not be fully removed. This kind of false alarm samples can be removed through a simple
post-process like median filtering.

Fig. 7. The testing speeds of Mask-RCNN and our Mask-CGANs in this task.

Table 2
Test on INBreast dataset.

Methods Dice index

the proposed 91.29%
Mask-RCNN [19] 91.07%
Multi-FCN-CRF with Adversarial Training [32] 90.97%
FCN with Adversarial Training 89.71%
FCN [33] 89.48%
CGANs with U-net [15] 90.40%
U-net [28] 89.79%

D. Liang, et al. Optik - International Journal for Light and Electron Optics 185 (2019) 1104–1114

1112



5. Conclusions and future work

We have presented a method to segment concealed weapon in Terahertz samples with poor imaging quality. Mask-CGANs with an
optimal model structure and a proper loss function, has abilities in segmenting concealed objects in such low quality and noisy
Terahertz samples within a small training dataset. The experimental results also prove that our system achieved much shorter
processing time than Mask-RCNN. The fast processing speed means it is appropriate to be implemented in a real-time Terahertz
security inspection system.

Mask-CGANs model still has a great improvement space. Improvements can be achievable in a more precise model with object
class labels and then extend it to large-scale instance segmentation. Also, it provides a promising solution for other complex and low
quality electromagnetic imaging environments, such as medical sample segmentation.
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